
Polyspace® Products for C/C++

Getting Started Guide

R2012b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Polyspace® Products for C/C++ Getting Started Guide
© COPYRIGHT 1997–2012 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
March 2008 First printing Revised for Version 5.1 (Release 2008a)
October 2008 Second printing Revised for Version 6.0 (Release 2008b)
March 2009 Third printing Revised for Version 7.0 (Release 2009a)
September 2009 Online only Revised for Version 7.1 (Release 2009b)
March 2010 Online only Revised for Version 7.2 (Release 2010a)
September 2010 Fourth Printing Revised for Version 8.0 (Release 2010b)
April 2011 Fifth Printing Revised for Version 8.1 (Release 2011a)
September 2011 Online only Revised for Version 8.2 (Release 2011b)
March 2012 Online only Revised for Version 8.3 (Release 2012a)
September 2012 Online only Revised for Version 8.4 (Release 2012b)

Contents

Introduction to Polyspace Products for
Verifying C/C++ Code

1
Product Overview . 1-2
Polyspace Client for C/C++ . 1-2
Polyspace Server for C/C++ . 1-2

Polyspace Verification . 1-4
Overview of Polyspace Verification 1-4
The Value of Polyspace Verification 1-4

Product Components . 1-7
Polyspace Verification Environment 1-7
Other Polyspace Components . 1-10

Installing Polyspace Products . 1-12
Finding the Installation Instructions 1-12
Obtaining Licenses for Polyspace Software 1-12

Working with Polyspace Software 1-13
Basic Workflow . 1-13
Tutorials in This Guide . 1-14

Additional Information and Support 1-16
Product Help . 1-16
MathWorks Online . 1-16

Related Products . 1-17
Polyspace Products for Verifying Ada Code 1-17
Polyspace Products for Linking to Models 1-17

v

Setting Up a Polyspace Project

2
Set Up Polyspace Project . 2-2
Overview of this Tutorial . 2-2
What Is a Project? . 2-2
Preparing Project Folders . 2-3
Opening Polyspace Verification Environment 2-4
Creating a New Project to Verify the Example C File 2-6

Running a Verification

3
Run Verification . 3-2
About this Tutorial . 3-2
Before You Start . 3-3
Preparing for Verification . 3-3
Starting Server Verification from Project Manager 3-8
Starting Client Verification from Project Manager 3-20

Reviewing Verification Results

4
Review Verification Results . 4-2
About this Tutorial . 4-2
Before You Start . 4-2
Opening Verification Results . 4-3
Exploring Results Manager perspective 4-4
Reviewing Results . 4-7
Reviewing Results Systematically . 4-23
Automatically Testing Unproven Code 4-28
Generating Reports of Verification Results 4-29

vi Contents

Checking Compliance with Coding Rules

5
Check Compliance with Coding Rules 5-2
About this Tutorial . 5-2
Before You Start . 5-3
Creating New Module for Coding Rules Checking 5-3
Setting MISRA C Checking Option 5-9
Selecting Coding Rules to Check . 5-10
Excluding Files from MISRA C Checking 5-14
Running a Verification with Coding Rules Checking 5-14
Examining MISRA C Violations . 5-16
Opening MISRA-C Report . 5-19

Index

vii

viii Contents

1

Introduction to Polyspace
Products for Verifying
C/C++ Code

• “Product Overview” on page 1-2

• “Polyspace Verification” on page 1-4

• “Product Components” on page 1-7

• “Installing Polyspace Products” on page 1-12

• “Working with Polyspace Software” on page 1-13

• “Additional Information and Support” on page 1-16

• “Related Products” on page 1-17

1 Introduction to Polyspace® Products for Verifying C/C++ Code

Product Overview

In this section...

“Polyspace Client for C/C++” on page 1-2

“Polyspace Server for C/C++” on page 1-2

Polyspace Client for C/C++
Prove the absence of run-time errors in source code

Polyspace® Client™ for C/C++ provides code verification that proves the
absence of overflow, divide-by-zero, out-of-bounds array access, and certain
other run-time errors in source code using static code analysis that does not
require program execution, code instrumentation, or test cases. Polyspace
Client for C/C++ uses formal methods-based abstract interpretation
techniques to verify code. You can use it on handwritten code, generated code,
or a combination of the two, before compilation and test.

Support for industry standards is available through IEC Certification Kit (for
ISO 26262 and IEC 61508) and DO Qualification Kit (for DO-178).

Key Features

• File- and class-level software component verification

• Formal method based abstract interpretation

• Display of run-time errors directly in code

• MISRA-C:2004, MISRA-C++:2008, and JSF++ coding standard
enforcement, with direct source file links

• Cyclomatic complexity and other code metrics

• Eclipse™ and Microsoft® Visual Studio® IDE integration

Polyspace Server for C/C++
Perform code verification on computer clusters and publish metrics

Polyspace Server™ for C/C++ provides code verification that proves the
absence of overflow, divide-by-zero, out-of-bounds array access, and certain

1-2

http://www.mathworks.com/products/iec-61508
http://www.mathworks.com/products/do-178

Product Overview

other run-time errors in source code. For faster performance, Polyspace Server
for C/C++ lets you schedule verification tasks to run on a computer cluster.
Jobs are submitted to the server using Polyspace Client for C/C++. You can
integrate jobs into automated build processes and set up e-mail notifications.
You can view defects, regressions, and code metrics via a Web browser. You
then use the client to download and visualize verification results.

Support for industry standards is available through IEC Certification Kit (for
ISO 26262 and IEC 61508) and DO Qualification Kit (for DO-178).

Key Features

• Web-based dashboard providing code metrics and quality status

• Automated job scheduling and e-mail notification

• Multi-server job queue manager

• Accelerated performance on multicore servers

• Verification report generation

• Mixed operating system environment support

1-3

http://www.mathworks.com/products/iec-61508/
http://www.mathworks.com/products/do-178/

1 Introduction to Polyspace® Products for Verifying C/C++ Code

Polyspace Verification

In this section...

“Overview of Polyspace Verification” on page 1-4

“The Value of Polyspace Verification” on page 1-4

Overview of Polyspace Verification
Polyspace products verify C, C++, and Ada code by detecting run-time errors
before code is compiled and executed.

To verify the source code, you set up verification parameters in a project, run
the verification, and review the results. A graphical user interface helps you
to efficiently review verification results. Results are color-coded:

• Green – Indicates code that never has an error.

• Red – Indicates code that always has an error.

• Gray – Indicates unreachable code.

• Orange – Indicates unproven code (code that might have an error).

The color-coding helps you to quickly identify errors and find the exact
location of an error in the source code. After you fix errors, you can easily run
the verification again.

The Value of Polyspace Verification
Polyspace verification can help you to:

• “Enhance Software Reliability” on page 1-4

• “Decrease Development Time” on page 1-5

• “Improve the Development Process” on page 1-6

Enhance Software Reliability
Polyspace software ensures the reliability of your C and C++ applications by
proving code correctness and identifying run-time errors. Using advanced

1-4

Polyspace® Verification

verification techniques, Polyspace software performs an exhaustive
verification of your source code.

Because Polyspace software verifies all possible executions of your code, it
can identify code that:

• Never has an error

• Always has an error

• Is unreachable

• Might have an error

With this information, you know how much of your code is free of run-time
errors, and you can improve the reliability of your code by fixing errors.

You can also improve the quality of your code by using Polyspace verification
software to check that your code complies with established coding standards,
such as the MISRA C®, MISRA® C++ or JSF++ standards.1

Decrease Development Time
Polyspace software reduces development time by automating the verification
process and helping you to efficiently review verification results. You can use
it at any point in the development process. However, using it during early
coding phases allows you to find errors when it is less costly to fix them.

You use Polyspace software to verify source code before compile time. To
verify the source code, you set up verification parameters in a project, run
the verification, and review the results. This process takes significantly less
time than using manual methods or using tools that require you to modify
code or run test cases.

Color-coding of results helps you to quickly identify errors. You will spend
less time debugging because you can see the exact location of an error in the
source code. After you fix errors, you can easily run the verification again.

1. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

1-5

1 Introduction to Polyspace® Products for Verifying C/C++ Code

Using Polyspace verification software helps you to use your time effectively.
Because you know the parts of your code that do not have errors, you can
focus on the code with proven or potential errors.

Reviewing code that might have errors (orange code) can be time-consuming,
but Polyspace software helps you with the review process. You can use filters
to focus on certain types of errors or you can allow the software to identify the
code that you should review.

Improve the Development Process
Polyspace software makes it easy to share verification parameters and
results, allowing the development team to work together to improve product
reliability. Once verification parameters have been set up, developers can
reuse them for other files in the same application.

Polyspace verification software supports code verification throughout the
development process:

• An individual developer can find and fix run-time errors during the initial
coding phase.

• Quality assurance engineers can check overall reliability of an application.

• Managers can monitor application reliability by generating reports from
the verification results.

1-6

Product Components

Product Components

In this section...

“Polyspace Verification Environment” on page 1-7

“Other Polyspace Components” on page 1-10

Polyspace Verification Environment
The Polyspace verification environment (PVE) is the graphical user interface
of the Polyspace Client for C/C++ software. You use the Polyspace verification
environment to create Polyspace projects, start verifications, and review
verification results.

The Polyspace verification environment consists of two perspectives:

• “Project Manager Perspective” on page 1-7

• “Results Manager Perspective” on page 1-9

Project Manager Perspective
The Project Manager perspective allows you to create projects, set verification
parameters, and start verifications.

1-7

1 Introduction to Polyspace® Products for Verifying C/C++ Code

You use the Project Manager perspective in the tutorial “Set Up Polyspace
Project” on page 2-2.

1-8

Product Components

Results Manager Perspective
The Results Manager perspective allows you to review:

• Results from the Polyspace coding rules checker, to verify compliance with
established coding standards.

• Verification results, comment individual checks, and track review progress.

1-9

1 Introduction to Polyspace® Products for Verifying C/C++ Code

You use the Results Manager perspective in the tutorials in “Check
Compliance with Coding Rules” on page 5-2 and “Review Verification Results”
on page 4-2.

Other Polyspace Components
In addition to the Polyspace verification environment, Polyspace products
provide several other components to manage verifications, improve
productivity, and track software quality. These components include:

• Polyspace Queue Manager Interface (Spooler)

• Polyspace Metrics Web Interface

Polyspace Queue Manager Interface (Polyspace Spooler)
The Polyspace Queue Manager (also called the Polyspace Spooler) is the
graphical user interface of the Polyspace Server for C/C++ software. You
use the Polyspace Queue Manager Interface to move jobs within the queue,
remove jobs, monitor the progress of individual verifications, and download
results.

You use the Polyspace Queue Manager in the tutorial “Starting Server
Verification from Project Manager” on page 3-8.

Polyspace Metrics Web Interface
Polyspace Metrics is a web-based tool for software development managers,
quality assurance engineers, and software developers. Polyspace Metrics

1-10

Product Components

allows you to evaluate software quality metrics, and monitor changes in code
metrics, coding rule violations, and run-time checks through the lifecycle
of a project.

For information on using Polyspace Metrics, see “Quality Metrics”.

1-11

1 Introduction to Polyspace® Products for Verifying C/C++ Code

Installing Polyspace Products

In this section...

“Finding the Installation Instructions” on page 1-12

“Obtaining Licenses for Polyspace Software” on page 1-12

Finding the Installation Instructions
The tutorials in this guide require Polyspace Client for C/C++ and Polyspace
Server for C/C++. Instructions for installing Polyspace products are in
“Software Installation”. Before installing Polyspace products, you must obtain
the required licenses.

Obtaining Licenses for Polyspace Software
For information about obtaining licenses for Polyspace products, see “License
Administration”.

1-12

Working with Polyspace® Software

Working with Polyspace Software

In this section...

“Basic Workflow” on page 1-13

“Tutorials in This Guide” on page 1-14

Basic Workflow
The following graphic shows the basic workflow for using Polyspace software
to verify source code.

Set up project

Verify code

Review verification results

1

2

3

In this workflow, you:

1 Use the Project Manager perspective to set up a project file.

2 Verify code on a server or client.

You can use the Project Manager perspective to start the verification or
you can select files from a Microsoft Windows® folder and send them to
Polyspace software for verification. For verifications that run on a server,
you use the Polyspace Queue Manager Interface (Polyspace Spooler) to
manage the verification and download the results to a client. You can set an
option to check coding rules compliance in the first stage of the verification.

1-13

1 Introduction to Polyspace® Products for Verifying C/C++ Code

3 Use the Results Manager perspective to review verification results.

Tutorials in This Guide
The tutorials guide you through the basic workflow, including the different
options for running verifications. The following graphic shows the workflow
you follow in these tutorials.

Create new project

Verify code

Review verification results

1

2

3

Check MISRA C compliance
4

In this workflow, you:

1 Create a new project that you use for the workflow.

This step is in the tutorial in “Set Up Polyspace Project” on page 2-2.

2 Verify a single C file.

This step is in the tutorial in “Run Verification” on page 3-2. In this
tutorial, you verify the same file using three different methods of running a
verification:

• Start a verification that runs on a server using the Project Manager
perspective.

1-14

Working with Polyspace® Software

• Start a verification that runs on a client using the Project Manager
perspective.

3 Review the verification results.

This step is in the tutorial in “Review Verification Results” on page 4-2.

4 Modify the project to include MISRA C checking and review the MISRA C
violations in the example file.

This step is in the tutorial in “Check Compliance with Coding Rules” on
page 5-2.

1-15

1 Introduction to Polyspace® Products for Verifying C/C++ Code

Additional Information and Support

In this section...

“Product Help” on page 1-16

“MathWorks Online” on page 1-16

Product Help
To access Polyspace online Help, select Help > Help .

To access the online documentation for Polyspace products, go to:

www.mathworks.com/help/toolbox/polyspace

MathWorks Online
For additional information and support, go to:

www.mathworks.com/products/polyspace

1-16

http://www.mathworks.com/help/toolbox/polyspace
http://www.mathworks.com/products/polyspace/index.html?s_cid=HP_FP_PS_PolySpace

Related Products

Related Products

In this section...

“Polyspace Products for Verifying Ada Code” on page 1-17

“Polyspace Products for Linking to Models” on page 1-17

Polyspace Products for Verifying Ada Code
For information about Polyspace products that verify Ada code, go to:

http://www.mathworks.com/products/polyspaceclientada/

http://www.mathworks.com/products/polyspaceserverada/

Polyspace Products for Linking to Models
For information about Polyspace products that link to models, go to:

http://www.mathworks.com/products/polyspacemodelsl/

http://www.mathworks.com/products/polyspaceumlrh/

1-17

http://www.mathworks.com/products/polyspaceclientada/
http://www.mathworks.com/products/polyspaceserverada/
http://www.mathworks.com/products/polyspacemodelsl/
http://www.mathworks.com/products/polyspaceumlrh/

1 Introduction to Polyspace® Products for Verifying C/C++ Code

1-18

2

Setting Up a Polyspace
Project

2 Setting Up a Polyspace Project

Set Up Polyspace Project

In this section...

“Overview of this Tutorial” on page 2-2

“What Is a Project?” on page 2-2

“Preparing Project Folders” on page 2-3

“Opening Polyspace Verification Environment” on page 2-4

“Creating a New Project to Verify the Example C File” on page 2-6

Overview of this Tutorial
You must have a project before you can run a Polyspace verification of your
source code. In this tutorial, you create the project that you use to run
verifications in later tutorials.

What Is a Project?
In Polyspace software, a project is a named set of parameters for verification
of your software project’s source files. A project includes:

• Source files

• Include folders

• One or more Configurations, specifying a set of analysis options

• One or more Modules, each of which include:

- Source (specific versions of source files used in the verification)

- Configuration (specific set of analysis options used for the verification)

- Verification results

You can create your own project or use an existing project. You create and
modify a project using the Project Manager perspective.

In this tutorial, you create a new project and save it as a configuration file
(.cfg).

2-2

Set Up Polyspace Project

Preparing Project Folders
Before you start verifying a C file with Polyspace software, you must know
the locations of the C source file and the include files. You must also know
where you want to store the verification results.

For each project, you decide where to store source files and results. For
example, you can create a project folder, and then in that folder, create
separate folders for the source files, include files, and results.

For this tutorial, prepare a project folder as follows:

1 Create a project folder named polyspace_project.

2 Open polyspace_project, and create the following folders:

• sources

• includes

3 Copy the file example.c from

Polyspace_Install\Examples\Demo_C_Single-File\sources

to

polyspace_project\sources

Polyspace_Install is the installation folder.

4 Copy the files include.h and math.h from

Polyspace_Install\Examples\Demo_C_Single-File\sources

to

polyspace_project\includes.

2-3

2 Setting Up a Polyspace Project

Opening Polyspace Verification Environment
You use the Polyspace verification environment to create projects, start
verifications, and review verification results.

To open the Polyspace verification environment:

1 Double-click the Polyspace icon (Windows systems).

Note On a Linux® or UNIX® system, use the following command:

/usr/local/Polyspace/PVE/bin/polyspace

2 If you have only Polyspace Client for C/C++ software installed on your
computer, skip this step. If you have both Polyspace Client for C/C++ and
Polyspace Client for Ada products on your system, the Polyspace Language
Selection dialog box opens.

3 Select Polyspace for C/C++ and click OK.

The Polyspace verification environment opens.

2-4

Set Up Polyspace Project

By default, the Polyspace verification environment displays the Project
Manager perspective. The Project Manager perspective has three main panes.

2-5

2 Setting Up a Polyspace Project

Use this
section...

For...

Project Browser
(upper-left)

Specifying:
• Source files

• Include folders

• Results folder

Configuration
(upper-right)

Specifying verification options

Output
(lower-right)

Monitoring the progress of a verification, and viewing
status, log messages, and general verification statistics.

You can resize or hide any of these panes. You learn more about the Project
Manager perspective later in this tutorial.

Creating a New Project to Verify the Example C File
You must have a project, saved with file type cfg, to run a verification. In this
part of the tutorial, you create a new project for verifying example.c.

You create a new project by:

• “Opening a New Project” on page 2-6

• “Specifying Source Files and Include Folders” on page 2-9

• “Specifying Target Environment” on page 2-11

• “Specifying Analysis Options” on page 2-11

• “Saving the Project” on page 2-12

Opening a New Project
To open a new project for verifying example.c:

1 Select File > New Project. The Polyspace Project – Properties dialog
box opens.

2-6

Set Up Polyspace Project

2 In the Project name field, enter example_project.

3 Clear the Default location check box.

Note In this tutorial, you change the location to the project folder that you
created in “Preparing Project Folders” on page 2-3.

You can update the default project location. SelectOptions > Preferences,
which opens the Polyspace Preferences dialog box. On the Project and
result folder tab, in the Define default project location field, specify
the new default location.

4 In the Location field, enter or navigate to the project folder that you
created earlier.

In this example, the project folder is C:\Polyspace\polyspace_project.

5 In the Project language section, select C .

2-7

2 Setting Up a Polyspace Project

6 Click Finish.

The example_project opens in the Polyspace verification environment.

2-8

Set Up Polyspace Project

Specifying Source Files and Include Folders
To specify the source files and include folders for the verification of example.c:

1 In the Project Browser, select the Source folder.

2 On the Project Browser toolbar, click the Add source icon . The
Polyspace Project – Add Source Files and Include Folders dialog box opens.

3 The project folder polyspace_project should appear in the field Look in.
If it does not, navigate to that folder.

4 Select the sources folder. Then click Add Source.

The example.c file appears in the Source tree for example_project.

5 Select the includes folder. Then click Add Include.

The includes folder appears in the Include tree for example_project.

2-9

2 Setting Up a Polyspace Project

Note In addition to the include folders you specify, Polyspace software
automatically adds the standard includes to your project.

6 Click Finish to apply the changes and close the dialog box.

The Project Browser now looks like the following graphic.

2-10

Set Up Polyspace Project

Specifying Target Environment
Many applications are designed to run on specific target CPUs and operating
systems. Since some run-time errors are dependent on the target, you must
specify the type of CPU and operating system used in the target environment
before running a verification.

In the Project Manager perspective, the Configuration > Target &
Compiler pane allows you to specify the target operating system and
processor type for your application.

To specify the target environment for this tutorial:

1 From the Target operating system drop-down list, select
no_predefined_OS.

2 From the Target processor type drop-down list, select i386.

For more information about emulating your target environment, see “Set
Up a Target”.

Specifying Analysis Options
In the Project Manager perspective, the Configuration pane allows you
to set analysis options that Polyspace software uses during the verification
process. For this tutorial, you should use the default values for all options.

2-11

2 Setting Up a Polyspace Project

For more information about analysis options, see .

Saving the Project
To save the project, select File > Save.

The software saves your project using the Project name and Location that
you specified when creating the project.

2-12

3

Running a Verification

3 Running a Verification

Run Verification

In this section...

“About this Tutorial” on page 3-2

“Before You Start” on page 3-3

“Preparing for Verification” on page 3-3

“Starting Server Verification from Project Manager” on page 3-8

“Starting Client Verification from Project Manager” on page 3-20

About this Tutorial
Once you have created the project example.cfg, as described in “Set Up
Polyspace Project” on page 2-2, you can run the verification.

You can run a verification on a server or a client.

Use... For...

Server • Best performance

• Large files (more than 800 lines of code, including comments)

Client • When the server is busy

• Small files

Note Verification on a client takes more time. You might
not be able to use your client computer when a verification is
running on it.

In this tutorial, you learn how to start a server and client verification using
the Project Manager and you verify the file example.c.

The server and client verifications store the same results in your project. You
review these results in the tutorial “Review Verification Results” on page 4-2.

3-2

Run Verification

Before You Start
Before you start this tutorial, you must complete “Set Up Polyspace Project” on
page 2-2. You use the folders and project file, example.cfg, from that tutorial.

Preparing for Verification

Opening the Project
To run a verification, you must have an open project file. For this tutorial,
you use the project file example.cfg that you created in “Set Up Polyspace
Project” on page 2-2. If example_project.cfg is not already open, open it.

To open example_project.cfg:

1 If the Polyspace software is not already open, open it.

2 Select File > Open Project.

The Open Polyspace Project dialog box opens.

3 Using the Look in drop-down list, navigate to polyspace_project.

4 Select example_project.cfg.

5 Click Open to open the file and close the dialog box.

3-3

3 Running a Verification

Specifying Source Files to Verify
Each Polyspace project can contain multiple modules. With each module, you
can verify a specific set of source files using a specific set of analysis options.

Therefore, before you start a verification, you must specify which files in your
project that you want to verify. In the example_project in this tutorial,
there is only one file to verify.

To copy source files to a module:

1 In the Project Browser Source tree, right click example.c.

2 Select Copy Source File to > Module_(1).

The example.c file appears in the Source tree of Module_(1).

Checking for Compilation Problems
The Compilation Assistant is enabled by default. During a verification, if the
Compilation Assistant detects compilation errors, the verification stops and

3-4

Run Verification

the software displays errors and possible solutions on the Output Summary
tab.

Note The Compilation Assistant does not support the verification option
-unit-by-unit.

To disable the Compilation Assistant, select Options > Preferences, which
opens the Polyspace Preferences dialog box. Then, on the Project and result
folder tab, clear the Use Compilation Assistant check box and click OK.

To check your project for compilation problems:

1 In the Project Browser tree, right click the Include folder (..\includes),
then select Remove. This will cause a compilation error.

2 On the Project Manager toolbar, click

The software compiles your code and checks for errors, and reports the
results on the Output Summary tab.

3-5

3 Running a Verification

Because you removed the include folder, the software reports a compilation
error for the project, along with suggested solutions for the problem.

3 Select a Suggestion/Remark cell to see a list of possible solutions for
the problem.

In this case, you can either add the missing include file, or set an option
that will attempt to compile the code without the missing include file.

4 Select Set option: -ignore-missing-headers. Then click Apply.

5 The software automatically sets the option Ignore missing header files
for your project. You can see this new option in the Assistant Active
Settings table on the Configuration > Compiler Settings tab.

3-6

Run Verification

6 On the Project Manager toolbar, click .

You see compilation warnings, since the code cannot be compiled without
include.h.

7 In the Project Browser tree, right-click the Include folder. From the
context menu, select Add, then click Add.

The Add Source Files and Include Folders dialog box opens.

3-7

3 Running a Verification

8 If you are not in the polyspace_project folder, navigate to this folder.

9 Select the includes folder. Then click Add Include.

The includes folder appears in the Include tree for example_project.

10 Click Finish.

11 On the Project Manager toolbar, click .

The verification should start and run to completion.

Starting Server Verification from Project Manager

• “Starting the Verification” on page 3-9

• “Monitoring Progress of the Verification” on page 3-11

• “Removing Verification Results from the Server” on page 3-17

3-8

Run Verification

• “Troubleshooting a Failed Verification” on page 3-18

Starting the Verification
In this part of the tutorial, you run the verification on a server.

To start a verification that runs on a server:

1 In the Project Manager perspective, on the Configuration > Machine
Configuration pane, select the Send to Polyspace Server check box.

2 On the Project Manager toolbar, click .

Note If you see the message Verification process failed, click OK
and go to “Troubleshooting a Failed Verification” on page 3-18.

The verification has three main phases:

a Checking syntax and semantics (the compile phase). Because Polyspace
software is independent of any particular C compiler, it ensures that
your code is portable, maintainable, and complies with ANSI® standards.

b Generating a main if the Polyspace software does not find a main and
you have selected the -main-generator option. For more information
about generating a main, see “Main Generator Behavior for Polyspace
Software”.

c Analyzing the code for run-time errors and generating color-coded
results.

The compile phase of the verification runs on the client. When the compile
phase is complete:

• You see the message queued on server at the bottom of the Project
Manager perspective. This message indicates that the part of the
verification that takes place on the client is complete. The rest of the
verification runs on the server.

3-9

3 Running a Verification

• A message in Output Summary gives you the identification number
(Analysis ID) for the verification. For this verification, the identification
number is 1.

3 For information on any message in the log, click the message.

3-10

Run Verification

Monitoring Progress of the Verification
There are two ways to monitor the progress of a verification:

• Using the Project Manager— Allows you to follow the progress of the
verifications you submitted to the server, as well as client verifications.

• Using the Queue Manager (Spooler) — Allows you to follow the
progress of any verification job in the server queue.

Monitoring Progress Using Project Manager. You can monitor the
progress of your verification by viewing the progress monitor and logs at the
bottom of the Project Manager perspective.

The progress monitor highlights the current phase in blue and displays the
amount of time and completion percentage for that phase.

The logs report additional information about the progress of the verification.
To view a log, click the button for that log. The information appears in the
log display area at the bottom of the Project Manager window. Follow the
next steps to view the logs:

1 Click the Output Summary tab to display compile phase messages and
errors. You can search the log by entering search terms in the Search in
the log box and clicking the left arrows to search backward or the right
arrows to search forward.

2 Click the Verification Statistics tab to display statistics, such as analysis
options, stubbed functions, and the verification checks performed.

3-11

3 Running a Verification

3 Click the Refresh button to update the display as the verification
progresses.

4 Click the Full Log tab to display messages, errors, and statistics for all
phases of the verification.

Note You can search the logs. In the Search in the log box, enter a
search term and click the left arrows to search backward or the right
arrows to search forward.

Monitoring Progress Using Queue Manager. You monitor the progress of
the verification using the Polyspace Queue Manager (also called the Spooler).

To monitor the verification of Example_Project:

1 Double-click the Polyspace Spooler icon on the desktop.

The Polyspace Queue Manager Interface opens.

3-12

Run Verification

Tip You can also open the Polyspace Queue Manager Interface by clicking

the Polyspace Queue Manager icon on the Results Manager toolbar.

2 Point anywhere in the row for ID 1.

3 Right-click to open the context menu for this verification.

4 Select View log file.

A window opens displaying the last one-hundred lines of the verification.

3-13

3 Running a Verification

5 Click Close to close the window.

6 Select Follow Progress from the context menu.

The Progress Monitor opens.

3-14

Run Verification

You can monitor the progress of the verification by watching the progress
bar and viewing the logs at the bottom of the window. The progress monitor
highlights the current phase in blue and displays the amount of time and
completion percentage for that phase.

The logs report additional information about the progress of the verification.
To view a log, click the button for that log. The information appears in the
log display area at the bottom of the Project Manager window. Follow the
next steps to view the logs:

3-15

3 Running a Verification

• Click the Output Summary tab to display compile phase messages and
errors. You can search the log by entering search terms in the Search
in the log box and clicking the left arrows to search backward or the
right arrows to search forward.

• Click the Verification Statistics tab to display statistics, such
as analysis options, stubbed functions, and the verification checks
performed.

• Click the Refresh button to update the display as the verification
progresses.

• Click the Full Log tab to display messages, errors, and statistics for all
phases of the verification.

Note You can search the logs. In the Search in the log box, enter a
search term and click the left arrows to search backward or the right
arrows to search forward.

7 Select File > Quit to close the progress window.

8 Wait for the verification to finish.

When the verification is complete, the status in the Polyspace Queue
Manager Interface changes from running to completed.

3-16

Run Verification

Removing Verification Results from the Server
At the end of a server verification, the server automatically downloads
verification results to the results folder specified in the project. You do not
need to manually download your results.

Note You can manually download verification results to another location on
your client system, or to other client systems.

Verification results remain on the server until you remove them. Once your
results have been downloaded to the client, you can remove them from the
server queue.

To remove your results from the server:

1 In the Polyspace Queue Manager Interface, right-click the verification,
and select Remove From Queue.

A dialog box opens to confirm that you want to remove the verification
from the queue.

2 Click Yes.

Note To download the results and remove the verification from the queue,
right-click the verification and select Download Results And Remove
From Queue. If you download results before the verification is complete,
you get partial results and the verification continues.

3 Select Operations > Exit to close the Polyspace Queue Manager Interface.

3-17

3 Running a Verification

Once the results are on your client, you can review them using the Results
Manager perspective. You review results from the verification in “Review
Verification Results” on page 4-2.

Troubleshooting a Failed Verification
When you see a message that the verification failed, it indicates that
Polyspace software could not perform the verification. The following sections
present some possible reasons for a failed verification.

Hardware Does Not Meet Requirements. If your computer does not have
the minimum hardware requirements. the verification fails. For information
about the hardware requirements, go to:

www.mathworks.com/products/polyspaceclientc/requirements.html.

To determine if this is the cause of the failed verification, search the log for
the message:

Errors found when verifying host configuration.

You can:

• Upgrade your computer to meet the minimal requirements.

• In the General section of the Analysis options, select the Continue with
current configuration option and run the verification again.

You Did Not Specify the Location of Include Files. If you see a message
in the log, such as the following, either the files are missing or you did not
specify the location of include files.

include.h: No such file or folder

For information on how to specify the location of include files, see “Creating a
New Project to Verify the Example C File” on page 2-6.

Polyspace Software Cannot Find the Server. If you see the following
message in the log, Polyspace software cannot find the server.

Error: Unknown host :

3-18

http://www.mathworks.com/products/polyspaceclientc/requirements.html

Run Verification

Polyspace software uses information in the preferences to locate the server.
To find the server information in the preferences:

1 Select Options > Preferences.

2 Select the Server Configuration tab.

3-19

3 Running a Verification

By default, Polyspace software automatically finds the server. You can
specify the server by selecting Use the following server and port and
providing the server name and port. For information about setting up a
server, see the “Software Configuration”.

Starting Client Verification from Project Manager

• “Starting the Verification” on page 3-20

• “Monitoring the Progress of the Verification” on page 3-22

• “Completing Verification” on page 3-23

• “Stopping the Verification Before It is Complete” on page 3-24

Starting the Verification
For the best performance, run verifications on a server. If the server is busy
or you want to verify a small file, you can run a verification on a client.

Note Because a verification on a client can process only a limited number
of variable assignments and function calls, the source code should have no
more than 800 lines of code.

To start a verification that runs on a client:

1 If the project example_project.cfg is not already open, open the project.

For information about opening a project, see “Preparing for Verification”
on page 3-3.

2 In the Project Manager perspective, on the Configuration > Machine
Configuration pane, clear the Send to Polyspace Server check box.

3 On the Project Manager toolbar, click .

4 If you see a caution that Polyspace software will remove existing results
from the results folder, click Yes to continue and close the message dialog
box.

3-20

Run Verification

The Output Summary and Progress Monitor windows become active,
allowing you to monitor the progress of the verification.

Note If you see the message Verification process failed, click OK
and go to “Troubleshooting a Failed Verification” on page 3-18.

3-21

3 Running a Verification

Monitoring the Progress of the Verification
You can monitor the progress of the verification by viewing the progress
monitor and logs at the bottom of the Project Manager perspective.

The progress monitor highlights the current phase in blue and displays the
amount of time and completion percentage for that phase.

The logs report additional information about the progress of the verification.
To view a log, click the button for that log. The information appears in the
log display area at the bottom of the Project Manager window. Follow the
next steps to view the logs:

1 Click the Output Summary tab to display compile phase messages and
errors. You can search the log by entering search terms in the Search in
the log box and clicking the left arrows to search backward or the right
arrows to search forward.

2 Click the Verification Statistics tab to display statistics, such as analysis
options, stubbed functions, and the verification checks performed.

3 Click the Refresh button to update the display as the verification
progresses.

4 Click the Full Log tab to display messages, errors, and statistics for all
phases of the verification.

3-22

Run Verification

Note You can search the logs. In the Search field, enter a search term
and click the left arrows to search backward or the right arrows to search
forward.

Completing Verification
When the verification is complete, the message End of Polyspace Verifier
analysis appears in Full Log, and the results file appears in the Project
Browser pane.

In the tutorial “Review Verification Results” on page 4-2 , you open the
Results Manager perspective and review the verification results.

3-23

3 Running a Verification

Stopping the Verification Before It is Complete
You can stop the verification before it is complete. If you stop the verification,
results are incomplete. If you start another verification, the verification starts
from the beginning.

To stop a verification:

1 On the Project Manager toolbar, click the Stop button

A warning dialog box opens.

2 Click Yes. The verification stops.

3 Click OK to close the Message dialog box.

Note Closing the Polyspace verification environment window does not stop
the verification. To resume display of the verification progress, start the
Polyspace software and open the project.

3-24

4

Reviewing Verification
Results

4 Reviewing Verification Results

Review Verification Results

In this section...

“About this Tutorial” on page 4-2

“Before You Start” on page 4-2

“Opening Verification Results” on page 4-3

“Exploring Results Manager perspective” on page 4-4

“Reviewing Results” on page 4-7

“Reviewing Results Systematically” on page 4-23

“Automatically Testing Unproven Code” on page 4-28

“Generating Reports of Verification Results” on page 4-29

About this Tutorial
In the previous tutorial, “Run Verification” on page 3-2, you completed a
verification of example.c. In this tutorial, you explore the verification results.

The Polyspace verification environment contains a Results Manager
perspective, which you use to review results. In this tutorial, you learn:

1 How to use the Results Manager perspective, including how to:

• Open the Results Manager perspective and view verification results.

• Review results

• Generate reports.

2 How to interpret the color-coding that Polyspace software uses to identify
the severity of an error.

3 How to find the location of an error in the source code.

Before You Start
Before starting this tutorial, be sure to complete the tutorial “Run
Verification” on page 3-2.

4-2

Review Verification Results

In this tutorial, you use the verification results in this file:

polyspace_project\Verification_(1)\Result_(1)\
RTE_px_example_project_LAST_RESULTS.rte.

Opening Verification Results

• “Opening Results Manager perspective” on page 4-3

• “Opening Verification Results” on page 4-3

Opening Results Manager perspective
Use the Results Manager perspective to review verification results.

To open the Results Manager perspective:

• In the Polyspace verification environment toolbar, select the Results

Manager button .

Opening Verification Results
To open the verification results:

1 In the Polyspace verification environment, select File > Open Result.

The Open results dialog box opens.

2 Navigate to the results folder:

polyspace_project\Module_(1)\Result_(1).

3 Select the file RTE_px_example_project_LAST_RESULTS.rte.

4 Click Open. The results appear in the Results Manager perspective.

Note You can also open results from the Project Manager perspective by
double-clicking the results file in the Project Browser.

4-3

4 Reviewing Verification Results

Exploring Results Manager perspective

• “Overview” on page 4-4

• “Reviewing the Results Explorer Tab” on page 4-5

Overview
The Results Manager perspective looks like the following figure.

4-4

Review Verification Results

The Results Manager perspective has six sections below the toolbar. Each
section provides a different view of the results. The following table describes
these views.

This Pane or View ... Displays ...

Results Explorer\Results Summary
(Procedural entities view)

List of the checks (diagnostics) for
each file and function in the project

Source
(Source code view)

Source code for a selected check in
the procedural entities view

Check Details
(Selected check view)

Details about the selected check

Check Review\Review Statistics
(Coding review progress view)

Review information about the
selected checkStatistics about the
review progress for checks with
the same type and category as the
selected check

Variable Access
(Variables view)

Information about global variables
declared in the source code

Call Hierarchy
(Call tree view)

Tree structure of function calls

You can resize or hide any of these sections. You learn more about the Results
Manager perspective later in this tutorial.

Reviewing the Results Explorer Tab
The Results Explorer view displays a table with information about the
diagnostics for each file in the project. The Results Explorer view is also
called the Procedural entities view

When you first open the results file from the verification of example.c, you
see the following procedural entities.

4-5

4 Reviewing Verification Results

The file example.c is red because it has a run-time error. Polyspace software
assigns each file the color of the most severe error found in that file. The first
column of the table in the Procedural Entities view is the procedural entity
(the file or function). The following table describes some of the other columns
in the procedural entities view.

Column
Heading

Indicates

Number of red checks (operations where an error always
occurs)

Number of gray checks (unreachable code)

Number of orange checks (warnings for operations where
an error might occur)

Number of purple checks (coding rule violations)

4-6

Review Verification Results

Column
Heading

Indicates

Number of green checks (operations where an error never
occurs)

Selectivity of the verification (percentage of checks that are
not orange)
This is an indication of the level of proof.

Note You can select which columns appear in the procedural entities view
by editing the preferences.

What you select in the procedural entities view determines what you see in
the other views. In the following examples, you learn how to use the views
and how they interact.

Reviewing Results

• “What are Review Levels?” on page 4-7

• “Displaying All Checks” on page 4-9

• “Reviewing All Checks” on page 4-9

• “Reviewing Additional Examples of Checks” on page 4-15

• “Filtering Checks” on page 4-20

What are Review Levels?
To facilitate your review of verification results, Polyspace allows you to specify
the type of results displayed in the Procedural entities and Source views
of the Results Manager perspective. You can specify:

• Type of coding rule violations, that is, purple checks

• Type and number of orange run-time checks

There are five levels at which you can review your results:

4-7

4 Reviewing Verification Results

• 0 — The software displays violations of coding rules with state Error and
red and gray run-time checks. You can configure the software to displays
orange checks that are potential run-time errors. Through the Polyspace
Preferences > Review Configuration tab, specify the categories of
potential run-time errors that you want the software to display. By
default, the software does not display any orange checks at this level. See
“Reviewing Checks at Level 0” on page 4-24.

This level is suitable for the review of fresh code.

• 1, 2, and 3 — The software displays all purple checks and red, gray,
and green run-time checks. The software displays orange checks
according to values specified on the Polyspace Preferences > Review
Configuration. You can use either a predefined methodology or a custom
methodology to specify the number of orange checks per check category.
See “Reviewing Checks at Levels 1, 2, and 3” on page 4-25.

For a predefined methodology, these levels are suitable for reviews at the
following stages of the development process.

Level Development Stage

1 Fresh code

2 Unit tested code

3 Code Review

• All — The software displays all purple checks and red, gray, green, and
orange checks. When you want to carry out an exhaustive review of your
verification results, use this level. See “Reviewing All Checks” on page 4-9.

The toolbar in the Results Manager perspective provides controls specific
to review levels.

The controls include:

• A slider for selecting the review level — 0, 1, 2, 3, or All. By default, the
Results Manager perspective opens at level 1.

• A menu for selecting the review methodology for levels 1, 2, and 3.

4-8

Review Verification Results

• Arrows for navigating through checks.

Displaying All Checks
By default, the Results Manager perspective opens at level 1. To display all
checks in the Procedural entities view, move the Review Level slider to All.

Reviewing All Checks
In this part of the tutorial, you learn how to use the Results Manager
perspective to examine verification checks. This part of the tutorial covers:

• “Selecting a Check to Review” on page 4-9

• “Displaying the Calling Sequence” on page 4-12

• “Tracking Review Progress” on page 4-12

Selecting a Check to Review. In the procedural entities view, example.c
is red, indicating that this file has at least one red check. To review a red
check in example.c:

1 In the procedural entities section of the Results Explorer view, expand
example.c.

2 Expand the red procedure Pointer_Arithmetic().

A color-coded list of the checks performed on Pointer_Arithmetic() opens.

4-9

4 Reviewing Verification Results

In the list of checks, each item has an acronym and a number. The acronym
identifies the check type. For example, in IDP.9, IDP stands for Illegal
Dereferenced Pointer. For more information, see “Run-Time Checks for
C Code”.

3 Click the red IDP.9.

The Source pane displays the section of source code where this error
occurs.

4-10

Review Verification Results

4 At line 104 of the code, click the red code.

An error message box opens indicating that when the pointer p is
dereferenced, it is outside of its bounds. At line 92, p points to the start of
array which has 100 elements. The for loop starting at line 94 initializes
the elements of array to 0. This for loop leaves p pointing to the location
after the last element of array.

4-11

4 Reviewing Verification Results

Displaying the Calling Sequence. You can display the calling sequence
that leads to the code associated with a check. To see the calling sequence for
the red IDP.9 check in Pointer_Arithmetic():

1 Expand Pointer_Arithmetic().

2 Click the red IDP.9.

3 Click the call graph button in the Check Review toolbar.

A window displays the call graph.

The code associated with IDP.9 is in Pointer_Arithmetic. The generated
main function calls RTE, which calls Pointer_Arithmetic.

Tracking Review Progress. You can keep track of the checks that you have
reviewed by marking them. To mark that you have reviewed the red IDP.9
check in Pointer_Arithmetic():

1 Expand Pointer_Arithmetic().

2 Click the red IDP.9.

The Review Statistics view displays a table with statistics about the
review progress.

4-12

Review Verification Results

The Count column displays a ratio and the Progress column displays
the equivalent percentage.

The first row displays the ratio of justified checks to total checks that have
the same color and category as the current check. In this example, the
first row displays the ratio of reviewed red IDP checks to total red IDP
errors in the project.

The second, third, and fourth rows display the ratio of justified checks to
total checks for red, gray, and orange checks respectively.

If you specified coding rules checking, the next row displays the ratio of
justified coding rule violations to total coding rule violations.

The last row displays the ratio of the number of green checks to the total
number of run-time checks, providing an indicator of the reliability of the
software.

Information about the current check (the red IDP.9) appears in the Check
Details pane (selected check view).

3 After you review the check, from the Check Review tab, select a
Classification to describe the severity of the issue:

4-13

4 Reviewing Verification Results

• High

• Medium

• Low

• Not a defect

4 From the Check Review tab, select a Status to describe how you intend
to address the issue:

• Fix

• Improve

• Investigate

• Justify with annotations

• No Action Planned

• Other

• Restart with different options

• Undecided

Note You can also define your own statuses. See “Define Custom Status”.

5 On the Check Review tab, in the comment box, enter additional
information about the check.

6 Select the check box to indicate that you have justified this check.

The Coding review progress part of the window updates the ratios of
errors reviewed to total errors.

4-14

Review Verification Results

Reviewing Additional Examples of Checks
In this part of the tutorial, you learn about other types and categories of
errors by reviewing the following examples in example.c:

• “Example: Unreachable Code” on page 4-16

• “Example: Arithmetic Error” on page 4-17

• “Example: A Function with No Errors” on page 4-18

• “Example: Division by Zero” on page 4-18

4-15

4 Reviewing Verification Results

Example: Unreachable Code. Unreachable code is code that never
executes. Polyspace software displays unreachable code in gray. In the
following example, you look at an example of unreachable code.

1 In Procedural Entities, click Unreachable_Code().

The source code view displays the source code for this function.

2 Examine the source code.

At line 210, the condition x < 0 is always false. The curly bracket { is gray
because the branch is never executed.

4-16

Review Verification Results

Example: Arithmetic Error. In the following example, Polyspace software
detects a memory corruption error:

1 In the Procedural entities view, expand the red Square_Root() function.

The source code view displays the source code for this function.

2 Examine the source code.

Because beta is always less than 0.75, the argument to the sqrt() function
at line 193 is always negative.

4-17

4 Reviewing Verification Results

Example: A Function with No Errors. In the following example, Polyspace
software verifies code with a large number of iterations, and determines that
the loop terminates and a variable does not overflow:

1 In Procedural entities, click the green Non_Infinite_Loop() function.

The source code view displays the source code for this function.

2 Examine the source code. The variable x never overflows because the while
loop at line 70 terminates before x can overflow.

Example: Division by Zero. In the following example, Polyspace software
detects division by zero:

1 In Procedural entities, expand Recursion().

The source code view displays the source code for this function.

4-18

Review Verification Results

2 Examine the Recursion() function.

When Recursion() is called with depth less than zero, the code at line 142
results in division by zero. The orange color indicates that this operation is
a potential error (depending on the value of depth).

3 Examine the red Recursion_caller function.

The first call to Recursion() at line 157 is red because it calls
Recursion() with depth less than zero, causing a division by zero. The

4-19

4 Reviewing Verification Results

second call to Recursion() at line 164 does not cause division by zero
because it calls Recursion() with depth greater than zero.

Filtering Checks
To focus on certain checks, you can filter checks that you see in the Results
Manager perspective. Polyspace software allows you to filter your results in
several ways. You can filter:

• Run-time checks or coding rule violations

• Run-time checks by category (for example, ZDV, IDP, and NIP)

• Violations of selected coding rules

• Run-time checks by color (gray, orange, green)

• Justified or unjustified checks

• Checks by classification

• Checks by status

To filter checks, on the Results Explorer or Results Summary toolbar,
select one of the following filters.

Tip The tooltip for a filter button indicates what the filter does.

Example: Filtering Coding Rule Violations

To hide all coding rule violations, on the Results Explorer or Results
Summary toolbar, from the drop-down list of the first filter, select Run-time
checks.

4-20

Review Verification Results

The software hides all coding rule violations and displays only run-time
checks.

To filter violations of a specific coding rule:

1 On the Results Explorer or Results Summary toolbar, click the coding

rules filter icon .

2 From the drop-down menu, clear the check box for the coding rule, for
example, 5.4.

The software does not display violations of this rule.

Example: Filtering IRV Checks

You can use an RTE filter to hide a given check category, such as IRV. When
a filter is enabled, you do not see that check category.

To filter IRV checks:

1 Expand Square_Root().

Square_Root() has five checks: four are green and one is red.

4-21

4 Reviewing Verification Results

2 Click the RTE filter icon .

3 Clear the IRV option.

The software hides the IRV check for Square_Root().

4 Select the IRV option to redisplay the IRV check.

Note When you filter a check category, red checks of that category are not
hidden. For example, if you filter IDP checks, you still see IDP.9 under
Pointer_Arithmetic().

4-22

Review Verification Results

Example: Filtering Green Checks

You can use a Color filter to hide certain color checks. When a filter is
enabled, you do not see that color check.

To filter green checks:

1 Expand Square_Root().

Square_Root() has five checks: four are green and one is red.

2 Click the Color filter icon .

3 Clear the Green Checks option.

The software hides the green checks.

Reviewing Results Systematically

• “Reviewing Checks at Level 0” on page 4-24

• “Reviewing Checks at Levels 1, 2, and 3” on page 4-25

4-23

4 Reviewing Verification Results

• “Reviewing Checks Progressively” on page 4-26

Reviewing Checks at Level 0
At this level, in addition to red and gray checks, you can focus on orange
checks that Polyspace identifies as potential run-time errors. These potential
run-time errors fall into three categories:

• Path— The software identifies orange checks that are path-related issues,
which are not dependent on input values.

• Path and bounded input— Default. In addition to orange checks that are
path-related issues, the software identifies orange checks that are related
to bounded input values.

• All — In addition to path-related and bounded input orange checks, the
software identifies orange checks that are related to unbounded input
values.

To specify the potential run-time error category for level 0:

1 In the Polyspace verification environment, select Options > Preferences.
The Polyspace Preferences dialog box opens.

2 Select the Review configuration tab.

3 From the Level drop-down list, select your category.

The default is Path and bounded input. If you select None, the software
displays only red and gray checks.

4 Click OK to save your options and close the Polyspace Preferences dialog
box.

4-24

Review Verification Results

To select review level 0, on the Results Manager toolbar, move the Review
Level slider to 0.

Reviewing Checks at Levels 1, 2, and 3
In addition to red, gray, and green checks, the software displays orange
checks according to values specified on the Review Configuration tab in the
Polyspace Preferences dialog box. See “Viewing Methodology Requirements
for Levels 1, 2, and 3” on page 4-25

You can use either a predefined methodology or a custom methodology to
specify the number of orange checks per check category.

To select a predefined methodology and review level:

1 From the Results Manager perspective, select Options > Preferences.
The Polyspace Preferences dialog box opens.

2 Select the Review configuration tab.

3 From theMethodology drop-down list, select, for example, Methodology
for C.

4 Move the Review Level slider to your required level, for example, level 1.

Viewing Methodology Requirements for Levels 1, 2, and 3. In this
part of the tutorial, you examine Methodology for C, which defines the
number of orange checks that you review at levels 1, 2, or 3.

To examine the configuration for Methodology for C:

1 In the Polyspace verification environment, select Options > Preferences.

4-25

4 Reviewing Verification Results

The Polyspace Preferences dialog box opens.

2 Select the Review configuration tab.

3 From theMethodology drop-down list, select Methodology for C.

In the section Levels 1, 2, and 3, a table shows the number of orange
checks that you review for a given level and check category.

For example, the table specifies that you review five orange ZDV checks
when you select level 1. The number of checks increases as you move from
level 1 to level 3, reflecting the changing review requirements as you move
through the development process.

4 Click OK to close the dialog box.

Reviewing Checks Progressively

On the Results Manager perspective toolbar, use the forward arrow to
move to the next unjustified check. The software takes you through checks
in the following order:

• All red checks

4-26

Review Verification Results

• All gray checks (the first check in each unreachable function).

• Orange checks — the number of orange checks is determined by the
methodology and review level that you select

Earlier in this tutorial, you selected Methodology for C, criterion l. In this part
of the tutorial, you review the checks for example.c using this methodology
and criterion. To navigate through these checks:

1 Select the Results Summary view.

2 Click the forward arrow to move to the next unjustified check.

The Source pane displays the source code for this check and the Check
Details pane displays information about this check.

4-27

4 Reviewing Verification Results

Note You can display the calling sequence and track review progress, as
described in “Reviewing Results” on page 4-7.

3 Continue to click the forward arrow until you have gone through all of
the checks.

After the last check, a dialog box opens asking if you want to start again
from the first check.

4 Click No.

Automatically Testing Unproven Code
Reviewing orange code to find true errors is a time-consuming task. You can
use the Automatic Orange Tester to automatically create and run test cases
to identify errors in the orange code. The workflow for using the Automatic
Orange Tester is:

1 Set an option to indicate that you want the software to run the Automatic
Orange Tester at the end of the verification.

2 Run the verification. The software uses results from the Automatic Orange
Tester to identify potential run-time errors.

3 If you want perform further dynamic tests on the code, run the Automatic
Orange Tester manually.

4 Review the results.

To learn how to use the Automatic Orange Tester, see “Automatically Test
Orange Code”.

4-28

Review Verification Results

Generating Reports of Verification Results

• “Polyspace Report Generator Overview” on page 4-29

• “Generating Report for example.c” on page 4-30

Polyspace Report Generator Overview
The Polyspace Report Generator allows you to generate reports about your
verification results, using predefined report templates.

The Polyspace Report Generator provides the following report templates:

• Coding Rules Report – Provides information about compliance with
MISRA C Coding Rules, as well as Polyspace configuration settings for
the verification.

• Developer Report – Provides information useful to developers, including
summary results, detailed lists of red, orange, and gray checks, and
Polyspace configuration settings for the verification. Detailed results are
sorted by type of check (Proven Run-Time Violations, Proven Unreachable
Code Branches, Unreachable Functions, and Unproven Run-Time Checks).

• Developer Review Report – Provides the same information as the
Developer Report, but reviewed results are sorted by review classification
(High, Medium, Low, Not a defect) and status, and untagged checks are
sorted by file location.

• Developer with Green Checks Report – Provides the same content as
the Developer Report, but also includes a detailed list of green checks.

• Quality Report – Provides information useful to quality engineers,
including summary results, statistics about the code, graphs showing
distributions of checks per file, and Polyspace configuration settings for
the verification.

• Software Quality Objectives Report – Provides comprehensive
information on software quality objectives (SQO), including code metrics,
code analysis (coding-rules checker results), code verification (run-time
checks), and the configuration settings for the verification. The code
metrics section provides is the same information displayed in the Polyspace
Metrics web interface.

4-29

4 Reviewing Verification Results

The Polyspace Report Generator allows you to generate verification reports in
the following formats:

• HTML

• PDF

• RTF

• DOC (Microsoft Word)

• XML

Note Microsoft Word format is not available on UNIX platforms. If you select
Word format on a UNIX platform, the software uses RTF format instead.

Generating Report for example.c
You can generate reports for any verification results using the Polyspace
Report Generator.

To generate a verification report:

1 If your verification results are not already open, open them.

2 Select Run > Run Report > Run Report.

The Run Report dialog box opens.

4-30

Review Verification Results

3 In the Select Report Template section, select Developer.rpt.

4 In the Output folder section, select the \polyspace_project folder.

5 Select PDF Output format.

6 Click Run Report.

The software creates the specified report. When report generation is
complete, the report opens.

4-31

4 Reviewing Verification Results

4-32

5

Checking Compliance with
Coding Rules

5 Checking Compliance with Coding Rules

Check Compliance with Coding Rules

In this section...

“About this Tutorial” on page 5-2

“Before You Start” on page 5-3

“Creating New Module for Coding Rules Checking” on page 5-3

“Setting MISRA C Checking Option” on page 5-9

“Selecting Coding Rules to Check” on page 5-10

“Excluding Files from MISRA C Checking” on page 5-14

“Running a Verification with Coding Rules Checking” on page 5-14

“Examining MISRA C Violations” on page 5-16

“Opening MISRA-C Report” on page 5-19

About this Tutorial
Polyspace software allows you to analyze code to demonstrate compliance with
established C or C++ coding standards (MISRA C 2004, MISRA C++:2008,
or JSF++:2005).2

Applying coding rules can both reduce the number of orange checks in your
verification results, and improve the quality of your code. Coding rules are
the most efficient way to reduce orange checks.

To check compliance with coding rules, you set an option in your project and
then run a verification. Polyspace software finds the violations during the
compile phase of a verification. When you have addressed all coding rule
violations, you run the verification again.

For more information on the coding rules checker, see “Overview of Polyspace
Code Analysis”.

In this tutorial, you learn how to:

2. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

5-2

Check Compliance with Coding Rules

1 Create a second module within your project.

2 Set an option for checking MISRA C compliance.

3 Select MISRA C rules to check.

4 Run a verification with MISRA C checking.

5 View coding rules violations using the Coding Rules perspective.

Before You Start
For this tutorial, you check the MISRA C compliance of the file example.c
using the project that you created in “Set Up Polyspace Project” on page 2-2.

Creating New Module for Coding Rules Checking

• “Opening Your Example Project” on page 5-3

• “Creating New Module” on page 5-4

• “Configuring Text and XML Editors” on page 5-8

Opening Your Example Project
For this tutorial, you modify the project in example.cfg to include MISRA C
checking. You use the Project Manager perspective to modify the project.

To open example_project.cfg:

1 Select File > Open Project.

The Open a Polyspace project file dialog box opens.

2 Navigate to polyspace_project.

3 Select example_project.cfg.

4 Click Open to open the file and close the dialog box.

5-3

5 Checking Compliance with Coding Rules

Creating New Module
A Polyspace project can contain multiple modules. Each of these modules can
verify a specific set of source files using a specific set of analysis options. In
this section, you create a second module to check coding rules compliance
for the example.c file.

To create a new module in example_project:

1 In the Project Browser, select example_project [C].

2 Click the Create a new module icon in the Project Browser toolbar.

A new verification, Module_2, appears in the Project Browser.

3 In the Project Browser Source tree, right-click example.c, and select Copy
Source File to > Module_2.

5-4

Check Compliance with Coding Rules

The example.c file appears in the Source tree of Module_(2).

4 Right-click the Configuration folder in Module_2, and select Create New
Configuration.

5 Right-click the example_project_1 configuration, and select Set as
Active Configuration.

The Project Browser now looks like the following figure.

5-5

5 Checking Compliance with Coding Rules

5-6

5 Checking Compliance with Coding Rules

5-7

5 Checking Compliance with Coding Rules

Configuring Text and XML Editors
Before you check MISRA rules, configure your text and XML editors in the
Polyspace Preferences dialog box. Configuring text and XML editors allows
you to view source files and MISRA reports directly from the Results Manager
perspective.

To configure your text and .XML editors:

1 From the Polyspace verification environment toolbar, select
Options > Preferences.

The Polyspace Preferences dialog box opens.

2 Select the Editors tab.

3 Specify an XML editor to use to view MISRA-C reports. For example:

C:\Program Files\MSOffice\Office12\EXCEL.EXE

4 Specify a Text Editor to use to view source files from the Project Manager
logs. For example:

5-8

Check Compliance with Coding Rules

C:\Program Files\Windows NT\Accessories\wordpad.exe

5 From the Arguments drop-down list, select your text editor to
automatically specify the command line arguments for that editor.

• Emacs

• Notepad++ — Windows only

• UltraEdit

• VisualStudio

• WordPad — Windows only

• gVim

If you are using another text editor, select Custom from the drop-down
menu, and specify the command line arguments for the text editor.

6 Click OK.

Setting MISRA C Checking Option
You set up MISRA C checking by setting an analysis option and then selecting
the rules to check. To set the MISRA C checking option:

1 Select the example_project_1 configuration in the Project Browser.

2 Select the Configuration > Coding Rules & Code Complexity Metrics
pane.

3 Select the Check MISRA C rules check box.

4 Use the corresponding drop-down list to specify the rules. For example,
select required-rules.

5 You can also specify the following options:

• Files and folders to ignore — Files, if any, to exclude from the
checking

• Effective boolean types — Data types that you want Polyspace to
consider as Boolean

5-9

5 Checking Compliance with Coding Rules

• Allowed pragmas— Undocumented pragma directives for which rule
MISRA C 3.4 should not be applied.

Selecting Coding Rules to Check
You must have a rules file to run a verification with MISRA C checking. You
can use an existing file or create a new one. You create a new rules file for
this tutorial by:

• “Creating a MISRA C Rules File” on page 5-10

• “Setting All Rules to Off” on page 5-12

• “Selecting Rules to Check” on page 5-12

Creating a MISRA C Rules File
To open a new rules file:

1 In the Project Manager perspective, select the Configuration > Coding
Rules & Code Complexity Metrics pane.

2 Select the Check MISRA C rules check box.

3 From the corresponding drop-down list, select custom.

4 Click the Edit button. The New File dialog box opens, displaying a table
of rules.

5-10

Check Compliance with Coding Rules

5 For each rule, specify one of the following states.

5-11

5 Checking Compliance with Coding Rules

State Causes the verification to ...

Error End after the compile phase when
this rule is violated.

Warning Display warning message and
continue verification when this rule
is violated.

Off Skip checking of this rule.

Note The default state for most rules is Warning. The state for rules that
have not yet been implemented is Off. Some rules have a fixed state of
Error, which you cannot change.

6 Click OK.

7 Use the Save as dialog box to save your rules file.

Setting All Rules to Off
In this tutorial, you select only a few rules. Therefore, first set the state of all
rules to Off. Later, you can select the specific rules that you want to check.

To set the state of all rules to Off:

1 In the New File dialog box, from the Set the following state to all
MISRA rules drop-down list, select Off.

2 Click Apply.

Selecting Rules to Check
To select the rules to check for this tutorial:

1 Expand the set of rules named 16 Functions.

2 Select the Error column for 16.3.

3 Expand the set of rules named 17 Pointers and arrays.

5-12

Check Compliance with Coding Rules

4 Select the Warning column for 17.4.

The completed rules table looks like the following figure:

5 Click OK to save the rules and close the window.

The Save as dialog box opens.

6 In File, enter misrac.txt

7 Click OK to save the file and close the dialog box.

5-13

5 Checking Compliance with Coding Rules

Excluding Files from MISRA C Checking
You can exclude files from MISRA C checking. You might want to exclude
some included files. To exclude math.h from the MISRA C checking of the
project example.cfg:

1 In the Project Manager perspective, select the Configuration > Coding
Rules & Code Complexity Metrics pane.

2 Select the Files and folders to ignore check box.

3 From the corresponding drop-down list, select custom.

4 In the File/Folder view, click .

5 Use the Open File dialog box to navigate to the folder
polyspace_project\includes.

6 Select the file math.h.

7 Click Open.

You see the file math.h in the File/Folder view.

Running a Verification with Coding Rules Checking
When you run a verification with the MISRA C option selected, the software
checks most of the MISRA C rules during the compile phase.3

To start the verification:

1 In the Project Browser, select your project configuration, for example,
example_project_1.

2 On the Project Manager toolbar, click the Run button .

The verification fails because of MISRA C violations. You see messages in
the Full Log, and the Output Summary indicates that the verification
has detected MISRA errors.

3. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

5-14

Check Compliance with Coding Rules

Note If a rule with state Error is violated, the verification stops.

5-15

5 Checking Compliance with Coding Rules

Examining MISRA C Violations
To examine the MISRA C violations:

1 In the Project Browser Result folder, double-click MISRA-C-report.xml,
which opens the Results Manager perspective.

2 On the Results Explorer toolbar, from the drop-down list of the first
filter, select Coding Rule violations.

3 Click any violation.

5-16

Check Compliance with Coding Rules

In the Check Details pane, you see a description of the violated rule and
the name of the file in which the violation was found. In the Source pane,
you see the source code that contains the violation.

The code uses a form of pointer arithmetic that is not allowed, a violation
of rule 17.4.

4 In the Source pane, right-click the highlighted code containing the
violation of rule 17.4. From the context menu, select Open Source File.

The example.c file opens in your text editor.

Note Before you can open source files, you must configure a text editor.
See “Configuring Text and XML Editors” on page 5-8.

5-17

5 Checking Compliance with Coding Rules

5-18

Check Compliance with Coding Rules

5 Fix the MISRA violation and run the verification again. The results will be
the same as those from the tutorial in “Run Verification” on page 3-2.

Opening MISRA-C Report
After you check MISRA rules, you can generate a report containing all the
errors and warnings reported by the MISRA-C checker.

Note Before you can open a MISRA-C report, you must configure an editor.
See “Configuring Text and XML Editors” on page 5-8.

To view the MISRA-C report:

1 Navigate to the folder that contains your coding rules report, for example,
C:\Polyspace\polyspace_project\Module_2\Result_1\Polyspace-Doc

2 Double-click the coding rules report, for example,
example_project_CodingRules.rtf. The report opens in your selected
editor.

5-19

5 Checking Compliance with Coding Rules

5-20

Index

IndexA
analysis options 2-11

MISRA C compliance 5-9
ANSI compliance 3-9
AOT. See Automatic Orange Tester
Automatic Orange Tester

overview 4-28

C
call graph 4-12
call tree view 4-4
calling sequence 4-12
cfg. See configuration file
client 1-7 3-2

installation 1-12
verification on 3-20

coding review progress view 4-4 4-12
coding rules compliance 1-4
color-coding of verification results 1-4 to 1-5 4-5
compile log

Project Manager 3-11 3-22
Spooler 3-12

compile phase 3-9
compliance

ANSI 3-9
coding rules 1-4
MISRA C 5-1

configuration file
definition 2-2

D
default folder

changing location 2-6
division by zero

example 4-18
downloading

results 3-17

E
expert mode

filters 4-20

F
files

includes 2-9
source 2-9

filters 4-20
folders

includes 2-9
sources 2-9

H
hardware requirements 3-18
help

accessing 1-16

I
installation

Polyspace Client for C/C++ 1-12
Polyspace products 1-12
Polyspace Server for C/C++ 1-12

L
licenses

obtaining 1-12
logs

compile
Project Manager 3-11 3-22
Spooler 3-12

full
Project Manager 3-11 3-22
Spooler 3-12

stats
Project Manager 3-11 3-22
Spooler 3-12

Index-1

Index

viewing
Project Manager 3-11 3-22
Spooler 3-12

M
manual mode

selection 4-9
use 4-7

MISRA C compliance
analysis option 5-9
checking 5-1
file exclusion 5-14
rules file 5-10
violations 5-16

P
Polyspace Client for C/C++

installation 1-12
license 1-12

Polyspace products for C
installation 1-12
licenses 1-12
related products 1-17
workflow 1-13

Polyspace products for C/C++
components 1-7
overview 1-4
user interface 1-7

Polyspace Queue Manager Interface. See Spooler
Polyspace Server for C/C++

installation 1-12
license 1-12

Polyspace verification environment
opening 2-4

preferences
Project Manager

default server mode 3-9
server detection 3-18

procedural entities view 4-4
product overview 1-4
progress bar

Project Manager window 3-11 3-22
project

creation 2-2 2-6
definition 2-2
file types

configuration file 2-2
folders

includes 2-3
results 2-3
sources 2-3

opening 3-3
saving 2-12

Project Manager
monitoring verification progress 3-11 3-22
opening 2-4
overview 2-4
perspective 2-4
starting verification on client 3-20
starting verification on server 3-8
viewing logs 3-11 3-22
window

progress bar 3-11 3-22
Project Manager perspective 1-7

R
related products 1-17

Polyspace products for linking toModels 1-17
Polyspace products for verifying Ada

code 1-17
reports

generation 4-29
results

downloading from server 3-17
opening 4-3
report generation 4-29
reviewing 4-1

Index-2

Index

Results Manager perspective 1-7
call tree view 4-4
coding review progress view 4-4
opening 4-3
overview 4-4
procedural entities view 4-4
selected check view 4-4
source code view 4-4
variables view 4-4

rte view. See procedural entities view

S
selected check view 4-4
server 1-7 3-2

detection 3-18
information in preferences 3-18
installation 1-12 3-18
verification on 3-8

source code view 4-4
Spooler 1-7

monitoring verification progress 3-12
removing verification from queue 3-17
use 3-12
viewing log 3-12

T
target environment 2-11
troubleshooting failed verification 3-18

U
unreachable code

example 4-16

V
variables view 4-4
verification

Ada code 1-17
C/C++ code 1-4
client 3-2
compile phase 3-9
failed 3-18
monitoring progress

Project Manager 3-11 3-22
Spooler 3-12

phases 3-9
results

color-coding 1-4 to 1-5
opening 4-3
report generation 4-29
reviewing 4-1

running 3-2
running on client 3-20
running on server 3-8
starting

from Project Manager 3-2 3-9 3-20
stopping 3-24
troubleshooting 3-18
with MISRA C checking 5-14

Verification
stopping 3-23

W
workflow

basic 1-13
in this guide 1-14

Index-3

	toc
	Introduction to Polyspace Products for Verifying C/C++ Code
	Product Overview
	Polyspace Client for C/C++
	Key Features

	Polyspace Server for C/C++
	Key Features

	Polyspace Verification
	Overview of Polyspace Verification
	The Value of Polyspace Verification
	Enhance Software Reliability
	Decrease Development Time
	Improve the Development Process

	Product Components
	Polyspace Verification Environment
	Project Manager Perspective
	Results Manager Perspective

	Other Polyspace Components
	Polyspace Queue Manager Interface (Polyspace Spooler)
	Polyspace Metrics Web Interface

	Installing Polyspace Products
	Finding the Installation Instructions
	Obtaining Licenses for Polyspace Software

	Working with Polyspace Software
	Basic Workflow
	Tutorials in This Guide

	Additional Information and Support
	Product Help
	MathWorks Online

	Related Products
	Polyspace Products for Verifying Ada Code
	Polyspace Products for Linking to Models

	Setting Up a Polyspace Project
	Set Up Polyspace Project
	Overview of this Tutorial
	What Is a Project?
	Preparing Project Folders
	Opening Polyspace Verification Environment
	Creating a New Project to Verify the Example C File
	Opening a New Project
	Specifying Source Files and Include Folders
	Specifying Target Environment
	Specifying Analysis Options
	Saving the Project

	Running a Verification
	Run Verification
	About this Tutorial
	Before You Start
	Preparing for Verification
	Opening the Project
	Specifying Source Files to Verify
	Checking for Compilation Problems

	Starting Server Verification from Project Manager
	Starting the Verification
	Monitoring Progress of the Verification
	Removing Verification Results from the Server
	Troubleshooting a Failed Verification

	Starting Client Verification from Project Manager
	Starting the Verification
	Monitoring the Progress of the Verification
	Completing Verification
	Stopping the Verification Before It is Complete

	Reviewing Verification Results
	Review Verification Results
	About this Tutorial
	Before You Start
	Opening Verification Results
	Opening Results Manager perspective
	Opening Verification Results

	Exploring Results Manager perspective
	Overview
	Reviewing the Results Explorer Tab

	Reviewing Results
	What are Review Levels?
	Displaying All Checks
	Reviewing All Checks
	Reviewing Additional Examples of Checks
	Filtering Checks
	Example: Filtering Coding Rule Violations
	Example: Filtering IRV Checks
	Example: Filtering Green Checks

	Reviewing Results Systematically
	Reviewing Checks at Level 0
	Reviewing Checks at Levels 1, 2, and 3
	Reviewing Checks Progressively

	Automatically Testing Unproven Code
	Generating Reports of Verification Results
	Polyspace Report Generator Overview
	Generating Report for example.c

	Checking Compliance with Coding Rules
	Check Compliance with Coding Rules
	About this Tutorial
	Before You Start
	Creating New Module for Coding Rules Checking
	Opening Your Example Project
	Creating New Module
	Configuring Text and XML Editors

	Setting MISRA C Checking Option
	Selecting Coding Rules to Check
	Creating a MISRA C Rules File
	Setting All Rules to Off
	Selecting Rules to Check

	Excluding Files from MISRA C Checking
	Running a Verification with Coding Rules Checking
	Examining MISRA C Violations
	Opening MISRA-C Report

	Index

